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     Foundation impedance functions provide a simple means to account for 
soil-structure interaction (SSI) effects in dynamic response analysis of 
structures under seismic loads. However, the frequency-dependency of 
impedance functions makes it difficult to incorporate SSI in standard time-
history analysis routines. This paper presents a method to transform 
frequency-domain impedance functions into time-domain recursive filters. 
The method is based on the least-squares approximation of impedance 
functions by ratios of two complex polynomials. Such ratios are 
equivalent, in the time-domain, to discrete-time recursive filters, which are 
simple finite-difference equations representing the relationship between 
foundation forces and displacements. Recursive-filter representation of 
impedance functions makes it very easy to incorporate soil-structure 
interaction in standard time-history analysis.  
            

 
INTRODUCTION 

 
     It is well known that soil-structure interaction (SSI) is one of the critical factors 
influencing response and damage in structures during earthquakes.  The primary effects 
of SSI are that it lowers the dominant frequency of the structure’s vibrations, particularly 
for heavy structures founded on soft soils, filters high frequencies, and increases damping 
(Safak, 1995). Depending on the frequency content of the ground shaking, SSI can be 
detrimental or beneficial for the structure. SSI becomes detrimental if, because of SSI, the 
dominant frequency of vibrations becomes closer to the dominant frequency of ground 
shaking. For structures susceptible to SSI, it is important that the frequency with SSI is 
used in calculating seismic forces and displacements because they are both proportional 
to the square of natural frequency.   
 
     A simple way to incorporate SSI in seismic analysis is to model the flexibility of the 
soil around the foundation by using springs and dashpots. The characteristics of the 
springs and dashpots are defined by foundation impedance functions. The impedance 
function is the ratio of a harmonic force applied to the foundation to the resulting 
harmonic displacement at the bottom of the foundation. Impedance functions are 
                                                 
*) U.S. Geological Survey, 525 South Wilson Avenue, Pasadena, CA 91106 

Proceedings Third UJNR Workshop on Soil-Structure Interaction, March 29-30, 2004, Menlo Park, California, USA.



 2

functions of frequency, as well as the foundation geometry and the characteristics of soil 
media. The fact that impedance functions are frequency dependent makes is difficult to 
incorporate SSI in routine dynamic analysis. Standard time-history analysis packages 
cannot model frequency-dependent springs and dashpots.  
 
    This paper presents a simple method to incorporate SSI in standard time-history 
analysis. The method is based on the concept of matching impedance functions by a ratio 
of two complex polynomials. Such ratios correspond to transfer functions of discrete-time 
recursive filters, which are time-domain finite-difference equations representing the 
relationship between foundation forces and displacements.  
 
 

DISCRETE-TIME RECURSIVE FILTERS FOR IMPEDANCE FUNCTIONS 
 

     A discrete-time recursive filter is defined by the following equation: 
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where x(t) and y(t) are the original (i.e., input) and the filtered (i.e., output) signals, 
respectively, and aj and bj denote the filter coefficients. The parameter t is used to denote 
time, as well as the time index (i.e., t≡ t⋅∆ , where ∆ is the sampling interval). If the filter 
parameters aj and bj are constants the filter is a time-invariant filter, if they change with 
time the filter is a time-varying filter. Time-varying filters can be used to represent 
nonlinear systems. By taking the Fourier transform of Eq. 1, we can write the following 
equation for the transfer function, H(ω), of the filter  
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X(ω) and Y(ω) denote the complex Fourier transforms of x(t) and y(t).  
 
       The general form of foundation impedance functions, K(ω), is 
 
 [ ]0 1 2( ) ( ) ( )K K K i Kω ω ω= ⋅ + ⋅  (3) 
 
where K0 denotes the static stiffness. If the foundation moves by an amount u(t) relative 
to the surrounding soil, the force, F(t,ω), exerted on the foundation by the soil is   
 
 ( , ) ( ) ( )F t K u tω ω= ⋅  (4) 
 
K(ω) can be considered as a filter that converts u(t) into F(t,ω). If we can approximate 
K(ω) as a ratio of two complex polynomials, similar to H(ω) as shown in Eq. 2, we can 
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then write the relationship between u and F  by a discrete-time recursive filter in a form 
similar to that given by Eq. 1.   
 
      We can find discrete-time transfer functions in the form of Eq. 2 to match given 
impedance functions by using the least-squares approximation technique. We determine 
the parameters aj and bj of the discrete-time transfer function H(ω) such that it is as close 
to K(ω) as possible. This is accomplished by minimizing the following error function:     
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where W(ω) is the weighting function. The use of weighting function gives the flexibility 
of  having better match between H(ω) and K(ω) at specified frequency bands. The filter 
parameters are determined by making  
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The resulting equations for ak and bl are solved by using various algorithms that are 
available in the literature (e.g., Levy, 1959; Sanathanan and Koerner, 1962). Once the 
parameters of the discrete-time filter for K(ω) is determined, the spring force F(t), at time 
step t, simply becomes  
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Note that this expression is completely in the time domain. The key point for applications 
is that, in order to calculate F(t), we need to save the past m values of F(t) and past n 
values of u(t) at every time step. This requires a simple modification in standard time-
history analysis routines.    
 
     One practical problem is the selection of filter orders, m and n.  There are no clear-cut 
rules for this selection. The higher the filter order (particularly the m value) the better the 
match. However, in order to have a stable filter, the poles of the filter (i.e., the roots of 
the denominator polynomial) should all be inside the unit circle in the complex plane. 
Too high m values my result in unstable filters. More detail on these and other practical 
points for applications are given in Safak (2004).  
 

 
EXAMPLE 

 
     As an example, consider the horizontal impedance function of a circular foundation on 
the surface of a homogenous soil media (uniform half-space) as shown in Figure 1. The 
properties of the foundation and soil media are given in the figure. 
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Figure 1 – Properties of the foundation and soil used in the example. 

 
 
The horizontal impedance function of this foundation is given by the following equation 
(Veletsos and Wei, 1971):  
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where Kstatic is the static stiffness; G,Vs, and ν are respectively the shear modulus, shear 
wave velocity, and Poisson’s ratio of the soil; and r denotes the radius of the circular 
foundation. For the numerical values given in Figure 1, the variations of the parameters 
R(ω) and I(ω) of the stiffness with the non-dimensional frequency a0 =ω r/ Vs are plotted 
in Figure 2.  
       

 
Figure 2 – Components of the horizontal impedance function of a circular foundation.    

r=10m  
 

Vs=400 m/s,ν=0.3

K(ω) =Kstatic· [R(ω)+i a0 I(ω)] 
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     We determine the coefficients of a matching discrete-time recursive filter by assuming 
m=2, n=1, and using the least-squares criterion and a linearly-decaying weighting 
function (in order to get a better match at lower frequencies). The filter coefficients are: 
a1=1.1599, a2=1.1599, b0=4.3033, and b1=-1.9780.  Therefore, the discrete-time transfer 
function for the impedance function is 
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The comparison of the amplitude and phase spectrum of H(ω)  with those of K(ω) are 
given in Figure 3.  Note that the horizontal axis denotes the real frequency, not the 
dimensionless frequency. Although only a second-order filter is used the match is very 
good.  A more complex impedance function would have required a higher-order filter. 
With the filter identified, we can calculate the soil reaction force, F(t), for the foundation 
as 
 
 [ ]( ) 1.1599 ( 1) 1.1599 ( 2) 4.3033 ( ) 1.9780 ( 1)staticF t F t F t K u t u t= − − − − + ⋅ − −  (10) 

 
Such an expression can easily be incorporated in any structural time-history analysis 
program to account for SSI effects. Examples of such applications can be found in Safak 
(2004). 
 
 

 
CONCLUSIONS 

 
      The frequency-dependency of foundation impedance functions makes it difficult to 
incorporate soil-structure interaction effects in standard time-history analysis software for 
structures under seismic loads. This difficulty can be eliminated by representing 
impedance functions as a ratio of two complex polynomials with unknown coefficients. 
The coefficients are determined by the least-squares approximation to the target 
impedance function. The ratio of two complex polynomials is equivalent, in the time-
domain, to a discrete-time recursive filter, which is a simple finite-difference equation 
representing the relationship between foundation forces and displacements. Such a 
conversion of impedance functions makes it very easy to incorporate soil-structure 
interaction in standard time-history analysis.  
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Figure 3 – Comparison of amplitude and phase of the foundation impedance function   
                  with those of the identified discrete-time filter. 
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